Comparison theorems for Lorentzian length spaces with lower timelike curvature bounds
نویسندگان
چکیده
In this article we introduce a notion of normalized angle for Lorentzian pre-length spaces. This concept allows us to prove some equivalences the definition timelike curvature bounds from below Specifically, establish comparison theorems known as local version Toponogov theorem and Alexandrov convexity property. Finally, an application obtain first variation Formula non-negatively curved globally hyperbolic length
منابع مشابه
Structure Theory of Metric-measure Spaces with Lower Ricci Curvature Bounds I
We prove that a metric measure space (X, d,m) satisfying finite dimensional lower Ricci curvature bounds and whose Sobolev space W1,2 is Hilbert is rectifiable. That is, a RCD∗(K,N)-space is rectifiable, and in particular for m-a.e. point the tangent cone is unique and euclidean of dimension at most N. The proof is based on a maximal function argument combined with an original Almost Splitting ...
متن کاملRiemannian Ricci curvature lower bounds in metric measure spaces with σ-finite measure
In prior work [4] of the first two authors with Savaré, a new Riemannian notion of lower bound for Ricci curvature in the class of metric measure spaces (X, d,m) was introduced, and the corresponding class of spaces denoted by RCD(K,∞). This notion relates the CD(K,N) theory of Sturm and Lott-Villani, in the case N = ∞, to the Bakry-Emery approach. In [4] the RCD(K,∞) property is defined in thr...
متن کاملSharp and Rigid Isoperimetric Inequalities in Metric-measure Spaces with Lower Ricci Curvature Bounds
We prove that if (X, d,m) is a metric measure space with m(X) = 1 having (in a synthetic sense) Ricci curvature bounded from below by K > 0 and dimension bounded above by N ∈ [1,∞), then the classic Lévy-Gromov isoperimetric inequality (together with the recent sharpening counterparts proved in the smooth setting by E. Milman for any K ∈ R, N ≥ 1 and upper diameter bounds) hold, i.e. the isoper...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: General Relativity and Gravitation
سال: 2022
ISSN: ['0001-7701', '1572-9532']
DOI: https://doi.org/10.1007/s10714-022-02989-2